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A classical lattice gas model with translation-invariant, finite-range competing 
interactions, for which there does not exist an equivalent translation-invariant, 
finite-range nonfrustrated potential, is constructed. The construction uses the 
structure of nonperiodic ground-state configurations of the model. In fact, 
the model does not have any periodic ground-state configurations. However, 
its ground-state--a translation-invariant probability measure supported by 
ground-state configurations--is unique. 
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1. I N T R O D U C T I O N  

The low-temperature behavior of systems of many interacting particles 
results from the competit ion between energy and entropy, i.e., the mini- 
mization of the free energy. At zero temperature this reduces to the mini- 
mization of the energy density. Configurations of a system which minimize 
its energy density are called ground-state configurations. One of the impor- 
tant problems of statistical mechanics is to find ground-state configurations 
for given interactions between particles. If we can find a configuration such 
that potential energies of all interactions between particles are minimal, 
then we can conclude that it is a ground-state configuration. It is then said 
that such a model is not frustrated. Otherwise, we may rearrange potentials 
and construct an equivalent Hamiltonian which may not be frustrated and 
which will enable us to find ground-state configurations. Here we present 
a classical lattice gas model with translation-invariant, finite-range compet- 
ing interactions for which there does not exist an equivalent translation- 
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invariant, finite-range nonfrustrated potential. In other words: the global 
minimum of energy is not the sum of its minima attained locally in space. 
More precisely, one cannot minimize the energy density of interacting 
particles by minimizing their energy in a finite box and all its translates, 
no matter how large is the box. 

2. CLASSICAL LATTICE GAS M O D E L S ,  FRUSTRATION,  
A N D  M - P O T E N T I A L S  

A classical lattice gas model is a system in which every site of a lattice 
Z d can be occupied by one of n different particles. An infinite lattice con- 
figuration is an assignment of particles to lattice sites, that is, an element 
of ~ = {1,..., n} ze. Particles can interact through many-body potentials. 
A potential ~b is a collection of real-valued functions q~A on configuration 
spaces g2A ---- { 1,..., n} A for all finite A ~ Z d. Here we assume q~ to have finite 
range, that is, q~A = 0 if the diameter of A is large enough, and to be 
translation-invariant. The formal Hamiltonian can then be written as 

H = ~  q~A 
A 

Two configurations X, Ye f2 are said to be equal at infinity, X ~  Y, if there 
exists a finite A c Z d such that X = Y outside A. The relative Hamiltonian 
is defined by 

H(X, Y) = ~ [~A(X)--  ~b~(Y)] for X ~  Y 
A 

Xeg2 is a ground-state configuration of H if 

H(Y,X)~>0 for any Y ~ X  

For  any potential the set of ground-state configurations is nonempty, but 
it may not contain any periodic configurations. (1 3) We will be concerned 
here with nonperiodic ground-state configurations which have uniformly 
defined frequencies for all finite patterns. By definition the orbit closure of 
such a ground-state configuration supports a unique strictly ergodic trans- 
lation-invariant measure called a ground state which is a zero-temperature 
limit of a low-temperature Gibbs state (an infinite-volume grand canonical 
probability distribution). If we can find a configuration that minimizes all 
~A, then it is necessarily a ground-state configuration and we call such 
potential nonfrustrated or an m-potential. (4' 5) Formally, a potential q~ is an 
m-potential if there exists a configuration X such that 

~A(X) --- min ~bA(Y) for any finite A 
Y 
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Otherwise, we may try to rearrange interactions to obtain an equivalent 
m-potential. Two potentials are defined to be equivalent if they yield the 
same relative Hamiltonian and therefore have the same ground-state 
configurations and the same Gibbs states. It follows that for any periodic 
configuration its energy density is the same (up to a trivial additive 
constant which can be chosen to be zero) for all equivalent potentials. It 
is best illustrated by an example of the antiferromagnetic nearest-neighbor 
spin-l/2 model on the triangular lattice. The formal Hamiltonian can be 

/ 

written as follows: 

i , j  

where ai, o) = + 1 and i and j are nearest-neighbor sites on the triangular 
lattice. When one looks at an elementary triangle it is easy to see that at 
least one pair of spins does not minimize its interaction. Two spins align 
themselves in opposite directions and then the third one can minimize 
only one of the two remaining interactions. This choice is a source of 
frustration {6} (see also another approach to frustration {7'8)). However, we 
may construct the following equivalent potential: 

where i, j, and k are vertices of an elementary triangle A and Oa = 0 
otherwise. Now, there are ground-state configurations minimizing every 
~A. Three spins on every elementary triangle still face choices, but they act 
collectively and therefore are not frustrated. 

In the following section we construct an example of a lattice gas model 
with nearest-neighbor, translation-invariant frustrated interactions for 
which there does not exist an equivalent finite-range, translation-invariant 
m-potential. The main problem of proving the impossibility of an m-poten- 
tial is that a grouping of interactions in big plaquettes, as in the above 
example, is not the only way of constructing an equivalent m-potential. To 
construct it, one may also use information about a global structure of 
excitations. In some models just grouping is clearly impossible because 
energy can be lower locally than that of a ground-state configuration and 
one can pay for it arbitrarily far away, yet one can still construct an equiv- 
alent m-potential. One of the easiest examples is a one-dimensional Ising 
model with the following interactions: the energy of + - neighbors is equal 
to - 1, the energy of - + neighbors is 2, and otherwise the energy is zero. 
There are arbitrarily long line segments with the energy equal to - 1 .  
Nevertheless, the above potential is equivalent to an m-potential with 
the energy of - +  neighbors equal to 1 and zero otherwise, or 

- �88 1 - 1) using spin variables. 
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3. AN INTRINSICALLY FRUSTRATED M O D E L  

The model is based on Robinson's tiles. (9' 10) There is a family of 56 
squarelike tiles such that using an infinite number of copies of each of them 
one can tile the plane only in a nonperiodic fashion. This can be translated 
into a lattice gas model in the following way, first introduced by Radin. (1-3) 
Every site of the square lattice can be occupied by one of the 56 different 
particles-tiles. Two nearest-neighbor particles which do not "match" 
contribute positive energy, which we choose to be 24 for our purposes; 
otherwise, the energy is zero. Such a model obviously does not have 
periodic ground-state configurations. There are uncountably many ground- 
state configurations, but only one translation-invariant ground-state 
measure supported by them. There is a one-to-one correspondence between 
ground-state configurations in the support of this measure and Robinson's 
nonperiodic filings. The low-temperature behavior of this model was 
investigated in refs. 11-13. 

We describe now slightly modified Robinson tiles (with a different 
number of tiles); we follow ref. 9 closely. There are seven basic tiles 
represented symbolically in Fig. 1. The rest of them can be obtained by 
rotations and reflections. The first tile on the left is called a cross; the rest 
are called arms. All tiles are furnished with one of the four parity markings 
shown in Fig. 2. The crosses can be combined with the parity marking at 
the lower left in Fig. 2. Vertical arms (the direction of long arrows) can be 
combined with the marking at the lower right and horizontal arms with the 
marking at the upper left. All tiles may be combined with the remaining 

Fig. 1. Crosses  and  arms.  
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Fig. 2. Parity markings. 

marking. Two nearest-neighbor tiles "match" if arrowheads meet arrow 
tails separately for the parity markings and the markings of crosses and 
a r m s .  

Let us now describe the mean features of Robinson's nonperiodic 
tilings. We will concentrate on the lattice positions of crosses denoted by 
[_, r, J, and q, where directions of line segments correspond to double 
arrows in Fig. 1. Every odd-oddposi t ion on the Z 2 lattice (if columns and 
rows are suitably numbered) is occupied by these tiles in relative orienta- 
tions as in Fig. 3. They form the periodic configuration with the period 4. 
Then in the center of each "square" one has to put again a cross such that 
the previous pattern reproduces, but this time with the period 8. Con- 
tinuing this procedure infinitely many times, we obtain a nonperiodic 
configuration. It has built in periodic configurations of period 2 n, n ~> 2, on 
sublattices of Z 2 as shown in Fig. 4. 

Now we will modify the above model, introducing another level of 
markings which are optional, that is, they can be present (one at a time) 
or absent in appropriate tiles. Every cross can be equipped with one of the 

r ] F -] 

L _] L J 

F -I F -'I 

L J L J 
Fig. 3. Relative orientation of crosses. 
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F 7 1- -1 F" -I F" -I 
F --I F -I 

L J L _J L _] L J 
F -I 

F -] r- -1 I -  -1 F- --I 
L / L I 

L .-] L -J L -J L J 
-I  

r- - I  F - I  I- --I r- - i  
r Q F -I 

L J 1_ _J L ..J L _1 
L _1 

I-- -1 l-  - I  I- -1 F - I  
L / L ._J 

L _.1 L _J L J h J 

Fig. 4. Robinson's nonperiodic ground-state configuration. 

two markings shown at the left in Fig. 5. The orientation of a marking at 
the top should be the same as the orientation of its cross and it comes 
in either red or yellow color; the second marking is red. Arms can be 
furnished with red or yellow lines shown in the middle column in Fig. 5 
(colored lines should be parallel to long arrows). Arms at the top in 
Fig. 1 can be equipped with a marking at the upper right in Fig. 5 with 
yellow-red, red-yellow, or yellow-yellow (but not red-red) segments 
perpendicular to long arrows and closer to their tails than to their heads, 
or a red marking at the lower right in Fig. 5 with a short segment parallel 
to long arrows and pointing in the other direction. Finally, arms in the 
middle row and at the bottom in Fig. 1 can be equipped with a marking 
at the upper right in Fig. 5 with yellow-red, red-yellow, yellow-yellow, and 

"vy I"Y 

Y 

Y 
Y 
F 

1" 
y 

Fig. 5. Additional markings. 
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red-red segments perpendicular to long arrows. Now, two tiles match if 
in addition to previous requirements there are no broken lines of new 
markings and adjacent colors are the same. In the corresponding classical 
lattice gas model in addition to two-body nearest-neighbor interactions we 
introduce a chemical potential equal to 1 for yellow crosses and having a 
negative value z > - 1 for red crosses with the marking at the upper left in 
Fig. 5 (called simply red crosses from now on) and zero value for the 
remaining particles-tiles. Let us notice that in the absence of broken bonds 
our matching rules force the number of yellow crosses to be at least equal 
to the number of red crosses. 

P r o p o s i t i o n .  For ~ > - 1  the unique ground-state measure of the 
modified model is the same as that of the original Robinson model. 

Proo f .  Let a broken bond be a unit segment on the dual lattice 
separating two nearest-neighbor particles with a positive interaction energy 
(a common side of two nearest-neighbor tiles which do not match). Let us 
divide the lattice into connected components without broken bonds (two 
lattice sites are connected if they are nearest neighbors) such that, on every 
component,  crosses having a relative orientation shown in Fig. 3 form a 
2Z 2 sublattice. This can be achieved by paths on the lattice dual to Z 2 with 
lengths smaller than 8 and joining broken bonds. For  any such component  
either all crosses on its 2Z 2 sublattice are colored and then no other cross 
can be colored, or no cross on this sublattice is colored. This follows from 
the fact that there are four lines of colored arms emanating from each cross 
and such lines cannot intersect each other. We call a cross on a 2Z 2 (2"Z 2, 
n~> 1, in general) sublattice a boundary cross if its distance from the 
boundary of its connected component  is smaller than 2 (2 n, n~> 1, in 
general). Now, we decompose further every connected component  without 
colored crosses on its 2Z 2 sublattice into connected components such that 
crosses form there a 4 Z  2 sublattice. This time it is achieved by paths on the 
dual lattice with lengths smaller than 16 and again joining broken bonds. 
Again, for any such component  either all crosses on its 4 Z  2 sublattice are 
colored and then no other cross is colored, or no cross on this sublattice 
is colored. In the latter case we have to decompose further this component.  
We repeat this procedure for all 2 n Z  2 sublattices for every n ~> 1. Now, the 
total number of all paths and every n in every finite region is bounded 
above by three times the number  of broken bonds (broken bonds and 
paths can be regarded as vertices and edges of a planar graph and our 
bound follows from Euler's formula). This shows that the density of red 
boundary crosses is bounded above by 24 times the density of broken 
bonds. The negative chemical potential of red boundary crosses is then 
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compensated by the positive energy of broken bonds. On the other hand, 
the density of yellow crosses is at least equal to the density of red crosses 
which are not boundary ones, so the negative chemical potential of these 
red crosses is compensated by the positive chemical potential of yellow 
crosses (~ > - 1). It follows that the energy of a configuration is at least 
proportional to the total length of broken bonds (a Peierls condition is 
satisfied). Hence in any ground-state configuration in the support of a 
ground-state measure broken bonds are absent. Among configurations 
without broken bonds, configurations without any colored particles 
(Robinson's original configurations) have the minimal energy density 
(equal to zero) and are therefore the only ground-state configurations. This 
follows again from the fact that ~ > - 1 and the number of yellow crosses 
is greater than or equal to the number of red crosses. | 

Obviously, our interactions do not constitute an m-potential. 
Moreover, it is impossible to construct a translation-invariant, finite-range 
m-potential by grouping interactions in big plaquettes as was done in the 
antiferromagnetic example. One may locate colored crosses on the sublat- 
tice 2"Z 2, therefore decreasing energy locally and paying for it arbitrarily 
far away (see Fig. 6). Now we will prove that for some r an equivalent 
translation-invariant, finite-range m-potential does not actually exist. 

T h e or e m.  The above-described model for - 1 <~ < - 6/10 does 
not have an equivalent translation-invariant, finite-range m-potential. 

Proof. Let us assume otherwise and let its range be smaller than 2". 
Let Us consider three configurations with periodic arrangements of colored 
markings and with their periods shown in Fig. 6, where squares have size 
2 n+l and only colored markings of the central tile of each square are 
shown. Equating their energy densities for the original interaction and a 
hypothetical equivalent m-potential, we obtain 

~ q- 3=ar-q-bry q-cy q-dyr +ery-q-gy-t-iy q-jy q-ky + ly-q-myr q-Oy (1) 

2~-q-2=-ar-l-bryq-cy-q-dyr-~erq-frq-gyq-irq-Jry+kyq-lryq-mr-l-Oy (2) 

2"c+2=ar+br+crWd~+ery+fr+g~y+iy+jy+ky+ly+myr+Oy ~ (3) 

where on the right-hand sides we have nonnegative contributions to the 
energy due to a hypothetical m-potential (we know from the Proposition 
that the energy density of the ground state is zero, so an m-potential can- 
not be negative) and coming from regions labeled in the upper left corners 
of the squares in Fig. 6; subscripts correspond to configurations of optional 
markings, with r denoting red, y denoting yellow, and ry and yr meaning 
a change of colors along a line of arms. 
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P e r i o d i c  c o n f i g u r a t i o n s  o f  c o l o r e d  m a r k i n g s .  

Now, set ~ = - 1 + 6/2. From (2) we obtain ar ~< ,5 and bry + Cy + dy,. + 
gy+Oy<~,5, and from (3), ery+iy+jy+ky+ly+my,.<<.`5. Then it follows 
from (1) that ar > / 2 -  (3/2)6, which contradicts ar <~ 6 if 5̀ < 4/5. This con- 
tradiction rules out the existence of an equivalent translation-invariant, 
finite-range m-potential. | 

4. C O N C L U S I O N S  

A classical lattice gas model with translation-invariant nearest- 
neighbor competing interactions is constructed. Its unique translation- 
invariant ground-state measure is supported by nonperiodic ground-state 
configurations. There are local excitations in the model such that the 
energy is locally lower than that of a ground-state configuration and one 
pays for it arbitrarily far away. This shows that by grouping interactions 
in big plaquettes, as in the antiferromagnetic model on the triangular 
lattice, one cannot construct an equivalent finite-range m-potential. More 
generally it is proved that such a potential actually does not exist. The 
model is therefore intrinsically frustrated. 
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Let  us note  that  in the an t i fe r romagnet ic  mode l  a spin on an elemen- 
tary  t r iangle  is f rus t ra ted  because  it faces a choice of direct ion.  Both  of its 
choices can be present  in a g round-s ta te  conf igurat ion,  therefore mak ing  a 
g round  s tate  highly degenerate.  In  our  example  a par t ic le  m a y  choose  a 
local  m i n i m u m  of energy and  then it appears  tha t  this does no t  lead to 

a g round-s t a t e  conf igurat ion.  
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